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Abstract. In this paper, main properties of the partial indices of the Riemann

boundary value problem, introduced by Muskhelishvili and Vekua, are considered.

This important invariant point of view gives a modern approach to two central

problems of complex analysis: Riemann–Hilbert monodromy and boundary value
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1. Introduction

We consider the impact of stability properties of the partial indices on
the solvability conditions of two classical problems: 1) the Riemann bound-
ary value problem, consisting in finding a piecewise holomorphic matrix
function with some boundary condition and 2) the Riemann monodromy
problem, consisting in the construction of a Fuchs type system of differential
equations with given monodromy. Both problems are given in an unfinished
work of Riemann [35]. There, Riemann considered the first problem as an
auxiliary method for solving the second problem.

Both problems have their specific methods of investigation and in the
scientific literature they are considered as independent central problems of
different areas of the complex analysis, the first one concerned with bound-
ary value problems from the theory of analytic functions and the second —
with the study of the analytic theory of differential equations

Starting from the second half of the 19th century, differential equations
with meromorphic coefficients were a subject of intensive research. In par-
ticular, L. Fuchs [17] proved regularity properties of n-th order differential
equations. During this period fundamental results have been obtained by
Hilbert, Poancaré, Schlesinger, Birkhoff (see [26]). In particular, the form of
the fundamental matrix in a neighborhood of a regular singular point was es-
tablished (Poincaré [33]), influence of the configuration of singular points of
a differential equation on monodromy matrices was investigated (Shlesinger
[38]), canonical form of systems of differential equations, in general case,
in the neighborhood of a regular singular point was found (Birkhoff [3]).
In the first decade of the 20th century investigation of regular systems was
to an extent stimulated by the Hilbert 21st problem [27], whose motiva-
tion, according to Hilbert, was that after its solution the theory of analytic
differential equations on the complex plane would acquire finalized form.
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J. Plemelj in papers [32] successfully applied the Fredholm theory of
integral equations developed by Hilbert to investigate behavior of analytic
functions near boundary points and gave solution of the Riemann mon-
odromy problem for regular systems of differential equations.

The works mentioned above, in particular [4],[32] contain certain defects,
which were caused by the noncommutation properties of matrix functions.
As it is well known today, not only proofs of theorems contained errors, but
the theorems themselves were not true [10],[2].

Later for the Riemann boundary value problemMuskhelishvili and Vekua
[29] introduced the concept of partial indices. This invariant of the bound-
ary problem turned out to be the reason of the above imprecisions in [4],[32].
In particular, the case when partial indices are stable is ”generic” and in this
case the solution of the Riemann monodromy problem [12] and the Birkhoff
standard form theorem are both correct [2]. Moreover, for stable partial
indices the Riemann boundary value problem is of constructive character,
i. e. exactly solvable, just as in the one dimensional case.

Muskhelishvili in [29] has several times remarked about imprecisions in
reasonings of Plemelj and give absolutely new proof of the boundary value
problem. He moreover noticed that without introduction of partial indices,
solution of the problem cannot be considered complete. As later was shown
by Bolibruch [12], the complete decision of the monodromy problem strictly
depends on the partial indices.

Below we give detailed analysis of the relationship between the partial
indices of the Riemann boundary value and monodromy problems.

1. Classical versions of the Riemann problems

1.1. The Riemann boundary value problem

Let Γ be a smooth closed positively oriented loop in CP 1 which separates
CP 1 into two connected domains U+ and U−. Suppose 0 ∈ U+ and ∞ ∈ U−.
Let us denote by Ω the space of all Hölder-continuous matrix functions
f : Γ → GLn(C) with the natural topology.

Problem I. Find a piecewise holomorphic vector function Φ(t) in U+ ∪
U−, which admits continuous boundary values on Γ and Γ the boundary
condition

Φ+(t) = f(t)Φ−(t), t ∈ Γ

and has finite order at ∞.

1.2. The monodromy problem

Let s1, ..., sm ∈ CP 1 be some points, with no ∞ among them, and let
ϱ : π1(CP 1 \ {s1, ..., sm} , z0) → GLn(C) be a representation.

The problem consists in the following:
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Problem II. For the representation ϱ, find a Fuchs system

df =

(
m∑
j=1

Aj

z − sj
dz

)
f, (1)

such that its monodromy representation coincides with ϱ. In (1), the Aj are
constant matrices satisfying the condition

∑m
j=1Aj = 0.

Today the standard name of this problem is the Hilbert 21st problem.

1.3. Solution of the problem I

Let the matrix function X(z) be a solution of problem I [30], [40]. It is
called canonical if it has the form

χ(z) = χ0(z) on z ∈ U+, χ(z) = χ0(z)D
−1(z), on z ∈ U−,

where χ0(z) is a holomorphic matrix function in U+ ∪ U−, admitting a

continuous inverse χ−1
0 (z) in U

+
and U

−
, respectively, including the point

z = ∞ and detχ0(∞) = 1. The matrix function D(z) is diagonal D(z) =
diag(zk1 , zk2 , ..., zkn) and the integers k1, k2, ..., kn satisfy the inequalities

k1 ≥ k2 ≥ ... ≥ kn.

Theorem 1. [29] For every f(t) ∈ Ω the canonical solution always
exists. The integer valued vector K = (k1, ..., kn) does not depend on the
considered canonical solution.

The integers k1, k2, ..., kn are called the partial indices of boundary prob-
lem 1 or of the matrix function f(t). In [29] the following formula for the
global index k of problem I is given:

k = k1 + k2 + ...+ kn with k =
1

2π
∆ΓargdetG(t).

1.4. Factorization of the matrix function

Let
Ω+ = {f ∈ Ω : f be the boundary value of the matrix function holo-

morphic in U+}.
Ω− = {f ∈ Ω : f be the boundary value of the matrix function holo-

morphic in U− and is regular at infinity f(∞) = 1}.
Theorem 2. Any matrix function f ∈ Ω can be represented as

f(t) = f−(t)dKf
+(t), (2)

where f± ∈ Ω± and dK is a diagonal matrix dK = diag(tk1 , ..., tkn) satisfying
the condition k1 ≥ ... ≥ kn.
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The diagonal matrix dK will be called the characteristic loop of the cor-
responding matrix function, K = (k1, k2, ..., kn) will be called the character-
istic multi-index or partial indices of f . Two matrix functions f, g ∈ Ω will
be called equivalent, if f and g have identical characteristic multi-indices.

For K = (k1, k2, ..., kn), denote by ΩK the set of equivalence classes of
loops Ω. The representation (2) is not unique, but if one fixes f+ (or f−)
then f− (respectively f+) will be uniquely defined.

If the matrix function f(t) admits the representation (2), then it is
represented as

f(t) = f̃+(t)d̃K̃ f̃
−(t), (3)

where d̃K̃ = diag(tκ1 , tκ2 , ..., tκ2) and f̃+(t), f̃−(t) are boundary values of
functions holomorphic in U+, U− respectively. Thus

∑n
j=1 kj =

∑n
j=1 κj

and for given n integer vectors (k1, k2, ..., kn), (κ1, κ2, ..., κn) there exists a
matrix function which admits the representation (2) and (3) with diagonal

matrices dK = (k1, k2, ..., kn) and d̃K̃ = (κ1, κ2, ..., κn) respectively.
In general, there exist many different factorizations of the matrix func-

tion similar to (2) or (3). Seemingly the first such representation has been
given by L. Sauvage [37] in the analytic theory of differential equations.
In different areas of mathematics analogical factorizations were used by
Schlesinger, Hilbert, Birkhoff, Wiener and Hopf, Grothendieck, Simonenko
(see modern overview of the matrix factorization theory [22]).

1.5. Stability of the partial indices

The partial indices of a matrix function are called stable, if in its suf-
ficiently small neighborhood all matrix functions have the same partial in-
dices.

The topological space Ω decomposes into a countable number of open
components

Ωk = {f ∈ Ω,∆Γargdetf(t) = 2πk},Ω = ∪kΩ
k, k ∈ Z.

One has Ωk = ∪KΩK and Ωk is connected.
Theorem 3. [8], [21] The set of partial indices is stable iff |ki−kj| ≤ 1,

i, j = 1, 2, ..., n.
The partial indices completely describe the solvability properties of prob-

lem I. They also determine solvability conditions for problem II (see below).
The global index is the only topological invariant of problem I in the sense
that each Ωk is connected. Thus in view of theorem 1.3 one can say that
generally the topological invariant completely describes the qualitative char-
acter of the solutions of problem I (see [7]).

The deformation ΩK
′ , K

′
= (k

′
1, k

′
2, ..., k

′
n) of the strata ΩK , K =

(k1, k2, ..., kn), is called elementary, if k
′
i = ki except for two indices p and

q, p < q, for which we have k
′
p = kp − 1, k

′
q = kq + 1.

Theorem 4. [8] The matrix functions f1(t) and f2(t) belong to the same
Ωk iff f1(t) and f2(t) are homotopic.
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From above theorems it follows, that in Ωk, for every k, there exists a
diagonal matrix with stable partial indices (p+ 1, p+ 1, ..., p+ 1, p, p, ..., p),
where k = np+ r, 0 ≤ r < n and every matrix function can be transformed
into such stable diagonal matrix by elementary operations. Besides, the
multi-index K as a function of f ∈ Ωk has discontinuities only on the strata
ΩK .

Theorem 5. [8] Let 0 < k < n, then in Ωk, among the strata ΩK

the only ones which are open and dense subspaces are the ones with K =
(1, 1, ..., 1, 0, 0, ...0), i. e. for such K, Ωk \ ΩK does not contain interior
points.

In the particular case, when k = np and k = 0 we have
Corollary 1. 1) If k = np, from the stability of the partial indices it

follows, that K = (p, p, ..., p).
2) If k = 0 and K = (k1, ..., kn) is stable, then K = (0, 0, ..., 0).
The Banach Lie group Ω+ × Ω− acts analytically on Ω via

f
α7−→ h1fh

−1
2 , f ∈ Ω, h1 ∈ Ω+, h2 ∈ Ω−.

It is clear, that the orbit of the diagonal matrix dK by the action α is ΩK .
The stability subgroup HK of f under the action α consists of those

pairs (h1, h2) of upper triangular matrix-functions where the (i, j)-th entry
in h1 is a polynomial in z of degree at most (k1 − k2) and f = h1fh

−1
2 ; the

space HK has finite dimension

dimHK =
∑
ki≥kj

(ki − kj + 1).

The stratum ΩK is a locally closed analytical submanifold of Ω and
codimension of ΩK in Ω is equal to

dimΩ/ΩK =
∑
ki⟩kj

(ki − kj − 1).

From the topological point of view the spaces Ω,Ωk,ΩK are considered
in [7], [34], [25].

1.6. Connection between the problem I and problem II

Let s1, ..., sm ∈ Γ and M1, ...,Mm ∈ GLn(C). We will say that the
piecewise constant matrix function G(t) is induced from collections s =
{s1, ..., sm}, M = {M1, ...,Mm} if it is constructed in the following manner

G(t) =Mj · ... ·M1, if t ∈ [sj, sj+1),

where Mj are monodromy matrices, corresponding to small loops going
around the singular points sj. It is possible to reduce problem I for such
matrix function to the boundary value problem with the continuous trans-
mission function [40].
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Let s1, ..., sm ∈ Γ be the points of discontinuity and suppose there exist
finite limits G(sj + 0) = limt→s1+0G(t) and G(sj − 0) = limt→s1−0G(t).
The curve Γ is supposed to be a union of smooth nonintersecting arcs
Γ1,Γ2, ...,Γm with fixed orientations. The ends of arcs Γj (j=1,2,...,m) are
sj and sj+1.

Suppose Mj = G−1(sj +0)G(sj − 0) and Ej =
1

2πi
lnMj so that if λij are

eigenvalues of Gj, then µi
j =

1
2πi

lnλij. Denote ρ
i
j = Reµi

j and normalize the
logarithm demanding that 0 ≤ ρij < 1.

Consider the matrix-functions

Ω+
j (z) = AjG(sj + 0)(z − sj)

Ej ,Ω−
j (z) = Bj

(
z − sj
z − z0

)Ej

,

where Aj, Bj are constant matrices:

A1 = E,Aj =

[
j−1∏
k=1

Ω+
k (sj)

]−1

, B1 = E,Bj =

[
j−1∏
k=1

Ω−
k (sj)

]−1

, j = 2, 3, ...m.

Functions Ω±
j (z) are holomorphic, respectively, in U±.

Proposition 1. The matrix-function

G1(t) =

(
m∏
j=1

Ω+
j (t)

)−1

G(t)
m∏
j=1

Ω−
j (t)

is continuous at points s1, ..., sm.
According to [40] there exists a canonical solution χ(z) of problem I

which satisfies the following conditions:
1. detχ(z) ̸= 0 on C with possible exception of points s1, s2, ..., sm.
2. There exists a diagonal matrix-function dK such that limz→∞ χ(z)dK(z)

is invertible at ∞.
3. If sj is some singular point then

lim
z→sj

(z − sj)
εχ(z) = 0,

for some real number ε > 0.
Let ω = dχ · χ−1 be a holomorphic 1-form on CP 1 \{s1, ..., sm}.
Theorem 6. [32], [10] The system of differential equations

df = ωf

is regular with singular points s1, ..., sm and given monodromy.
This theorem gives a solution of problem II in the class of regular sys-

tems.

2. Algebraic-topological version of the problems I and II

In this section by given data of problem I (the transmission function f(t))
and problem II (the monodromy matrices M1,M2, ...,Mm) we construct a
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holomorphic vector bundle on CP 1 and in terms of the invariants of this
bundle pose and solve the aforementioned problems.

2.1. The vector bundle induced from problem I

Consider the holomorphic vector bundle on CP 1 which is obtained by
the covering of the Riemann sphere CP 1 by three open sets {U+, U−, U3 =
CP 1 \ {0,∞}}, with transition functions

g13 = f+ : U+ ∩ U3 → GLn(C),

g23 = f−dK : U− ∩ U3 → GLn(C).

It is denoted by E → CP 1.
Theorem 7. [23] Every holomorphic vector bundle splits into direct

sum of the line bundles

E ∼= E(k1)⊕ ...⊕ E(kn). (4)

The numbers k1,...,kn are the Chern numbers of the line bundles E(k1),.
..,E(kn) and satisfy the conditions k1 ≥...≥ kn. The integer-valued vector
K = (k1, ..., kn) ∈ Zn is called the splitting type of the holomorphic vector
bundle E. It defines uniquely the holomorphic type of the bundle E.

Connection between partial indices of the boundary value problem, char-
acteristic multi-index of the matrix-function f ∈ Ω and splitting type of the
holomorphic vector bundle E are presented in the following summarizing
theorem:

Theorem 8. There is a one-to-one correspondence between the strata
ΩK and holomorphic vector bundles on CP 1.

Denote by O(E) the sheaf of germs of holomorphic sections of the bundle
E, then the solutions of problem I are elements of the zeroth cohomology
group H0(CP 1, O(E)), therefore the number l of the linearly independent
solutions of problem I is dimH0(CP 1, O(E)). Since the Chern number
c1(E) of the bundle E is equal to the index of detG(t), we have obtained
the known criterion of solvability of the problem I. In particular the following
theorem is true:

Theorem 9. The Riemann-Hilbert boundary problem has solutions if
and only if c1(E) ≥ 0, and the number l of linearly independent solutions is

l = dimH0(CP 1, O(E)) =
∑
ki>0

ki + 1.

Consider H1(CP 1;O(EndE)) — the first cohomology group with coef-
ficients in holomorphic sections of the bundle End(E). Since End(E) ∼=
E ⊗ E∗, the corresponding cocycle will be γ ⊗ γ−1 : S1 → GLn2(C), γ ⊗
γ−1 = diag(zk1−k1 , zk1−k2 , . . . , zkn−kn). Then End(E) = O(k1−k1)⊕O(k1−
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k2) ⊕ · · · ⊕ O(kn−1 − kn) ⊕ O(kn − kn). Since dimH1(CP 1;O(End(E)) =∑
dimH1(CP 1;O(ki − kj)), and dimH1(CP 1;O(k)) = |k| − 1 for k <

0, whereas H0(CP 1;O(End(O(k)))) = 0 for k ≥ 0, using moreover the
Riemann-Roch theorem, one obtains

dimH1(CP 1;O(EndE)) =
∑
ki>kj

(ki − kj − 1).

Suppose k1 > · · · > kn. Then, following Kodaira,

dimH1(CP 1;O(End(E))) =
∑
i<j

(ki − kj)−
n(n− 1)

2
,

is called the moduli number and plays important role in the theory of de-
formations of complex structures of vector bundles (see [18]).

2.2. Vector bundle induced from the problem II

The idea of the constructions of holomorphic vector bundles by mon-
odromy matrices belongs to H.Röhrl [36]. Röhrl applied this construction
to the solution of a weak version of problem II for noncompact Riemann
surfaces.

Let S = {s1, s2, ..., sm} be a set of marked points on CP 1. Denote by
Xm = CP 1 \ S. Let X̃ → Xm be the universal covering map of Xm, then it
is a bundle with fibre π1(Xm, z0), where z0 ∈ Xm. π1(Xm, z0) is isomorphic
to the group of deck transformations of this covering and therefore acts on
X̃.

Let
ρ : π1(Xm, z0) → GLn(C) (5)

be some representation.
Consider the trivial principal bundle X̃×GLn(C) → X̃ (or vector bundle

X̃ × Cn → X̃). The quotient space X̃ × GLn(C)/ ∼ gives a locally trivial
bundle on Xm, where ∼ is an equivalence relation identifying the pairs
(x̃, g) and (σx̃, ρ(σ)g), for every x̃ ∈ X̃, g ∈ GLn(C) (or g ∈ Cn). Denote
the obtained bundle by Pρ → Xm (or Eρ → Xm) and call it the bundle
associated with the representation ρ.

Obviously, this bundle according to the transition functions may be con-
structed in the following manner. Let {Uα} be a simple covering of Xm, i. e.
every intersection Uα1 ∩ Uα2 ∩ ... ∩ Uαk

is connected and simply connected.
For each Uα, we choose a point zα ∈ Uα and join z0 and zα with a γα starting
at z0 and ending at zα. For a point z ∈ Uα ∩ Uβ we choose a path τα ⊂ Uα

which starts at zα and ends at z. Consider

gαβ (z) = ρ
(
γατα (z) τ

−1
β (z) γ−1

β

)
. (6)

We see that gαβ (z) = gβα (z) on Uα ∩ Uβ and gαβgβγ (z) = gαγ (z) on Uα ∩
Uβ ∩ Uγ.
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The cocycle {gαβ (z)} does not depend on the choice of z. Hence {gαβ}
are constants. It is known, that the holomorphic bundle can be equipped
with a flat holomorphic connection iff the transition functions of the cocycle
defined by the bundle are constant. Hence local 1-forms {ωα = 0} on Uα

define a holomorphic connection on Eρ. This follows from the identity

ωα = gαβωβgβα + dgαβgβα.

So, ω = {ωα} is a holomorphic 1-form on Xm and therefore is a con-
nection form of the bundle P ′

ρ → Xm. The corresponding connection is

denoted by ∇′. We will extend the pair
(
P ′
ρ,∇′) to CP 1. As the required

construction is of local character, we shall extend P ′
ρ → Xm to the bundle

P ′′
ρ → Xm ∪ {si}, where si ∈ S.

First consider the extension of the principal bundle P
′
ρ → Xm. Suppose

a neighborhood Vi of the point si meets Uα1 , Uα2 , ...Uαk
. As we noted when

constructing the bundle from transition functions (6) only one of them is
different from identity. Let us denote it by g1k, then g1k = Mi, where
Mi is the monodromy which corresponds to the singular point si and is
obtained from the representation (5). Mark a branch of the many-valued
function (z̃ − si)

Ei containing the point s̃i ∈ Ũi, where Ei =
1

2πi
lnMi with

eigenvalues µ1
j , µ

2
j , ..., µ

n
j satisfying the conditions 0 ≤ Reµi

j < 1. Thus the
marked branch defines a function

g01 = (z − si)
Ei . (7)

Denote by g02 the extension of g01 along the path which goes around si
counterclockwise, and similarly for other points. At last on Vi ∩ Uαk

∩ Uα1

we shall have:
g0k(z) = g01(z)Mi = g01(z)g0k(z).

The function g0k : Vi → GLn(C) is the one defined at the point si, and
takes there value coinciding with the monodromy matrix. It means, that
we made extension of the bundle to the point si. In a neighborhood of si
one will have

ωi = dg0kg
−1
0k = Ei

dz

z − si
.

So we obtained the holomorphic principal bundle Pρ → CP 1 on the sphere
CP 1. The vector bundle associated to Pρ → CP 1, which we denote by
Eρ → CP 1 and call canonical, is not topologically trivial.

Proposition 2. The Chern number c1(Eρ) of Eρ → X is equal to

c1(Eρ) =
m∑
i=1

tr(Ei). (8)

Denote by ∇ the connection of Eρ. The holomorphic horizontal sections
of Eρ satisfy the equation

∇f = 0 ⇐⇒ df = ωf. (9)
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Theorem 10. System (9) has regular singularity at points s1, s2, ..., sm
and its monodromy representation coincides with the given representation.
This theorem is other formulation of the result of Plemelj [32].

2.3. Solution of the problem II

Let (9) be the regular system of differential equations which is induced
by the representation (5). The fundamental matrix of solutions in a neigh-
borhood of sj is

Φj (z̃) = Uj(z)(z − sj)
Ψj(z̃ − sj)

Ej . (10)

Here Ψj are exponents of the solution space R of system (9) and Ej =
1

2πi
lnMj, with eigenvalues µ1

j , µ
2
j , ..., µ

n
j satisfying the conditions 0 ≤ Reµi

j <
1. The numbers βi

j = φi
j + µi

j will be called exponents of the solution space
ℜ at the point sj (or j-exponents).

Using the exponents βi
j, the condition for a regular system on CP 1 to

be of Fuchs type is given by the following proposition.
Proposition 3. [10] A regular system df = ωf on CP 1 with singular

points s1, ..., sm is of Fuchs type if and only if the following condition is
satisfied

β =
m∑
j=1

n∑
i=1

βi
j = 0.

If we take in (7)

g01 = (z − si)
Ψi(z̃ − si)

Ẽi ,

where Ψi are diagonal matrices with integer entries placed in increasing
order and Ẽi are upper-triangular matrices, we obtain another extension
of the bundle Eρ with a meromorphic connection with singularities at the
points s1, ..., sm, whose monodromy coincides with (5). Denote by EC,Ψi

all possible extensions of E ′
ρ, where C is any collection of nondegenerate

matrices C1, ..., Cn which transform monodromy matrices M1, ...,Mm into
upper triangular form and Ψi are diagonal matrices described above.

For a holomorphic bundle E ′
ϱ → CP 1 \ {s1, ..., sm} with connection ∇′

consider such an extension EC,Ψ to CP 1 for which Ψ = (0, ..., 0). Denote
the corresponding vector bundle with connection by (E0,∇0) and call it the
canonical extension (see [14]).

Let us now formulate a condition for solvability of the 21st Hilbert prob-
lem.

Theorem 11. [10] A representation ϱ is realizable as a monodromy
representation of a Fuchs system with given singular points s1,...,sm if and
only if among the bundles EC,Ψ → CP 1 there is a holomorphically trivial
one, i. e. such that its splitting type is (0, ..., 0).

It is known that any irreducible representation ϱ is realizable by a Fuch-
sian system and every finitely generated irreducible subgroup of GLn(C)
is the monodromy group of a Fuchsian system on the Riemann sphere,
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so that counterexamples must be sought among reducible representations.
Thus irreducibility of the representation is a sufficient condition, any reg-
ular system with irreducible monodromy group is equivalent to Fuchsian
one, although there exists a special class of reducible representations, the
s. c. B-representations (the notation is in honor of A. Bolibruch, who was
the first to distinguish this class of representations), which are realizable by
Fuchsian systems. We will now make this assertion more precise.

2.4. The stability of holomorphic vector bundles

A concept of stability (semistability) of holomorphic vector bundles was
introduced by D. Mumford (see [28]) for the classification of the holomorphic
vector bundles on Riemann surfaces of genus g > 1. A criterion of stability
for flat holomorphic bundles was obtained by A. Weil. A generalization of
Weil’s theorem is given by the Narasimhan-Seshadri theorem [31], which
gives a criterion of stability for topologically nontrivial holomorphic vector
bundles. The differential-geometric approach to the Narasimhan-Seshadri
theorem is given in [15].

Let E → X be a holomorphic vector bundle on a Riemann surface X,
with degE = k and rankE = n. The normalized Chern class of the vector
bundle E is defined by µ (E) = k

n
.

A bundle E is called stable (resp. semistable) in the sense of Mumford,
if for every subbundle F ⊂ E, we have

µ (F ) < µ (E) , (resp.µ (F ) ≤ µ (E)).

If E → X is a holomorphic vector bundle over a Riemann surface of genus
g ≥ 2, then it does not necessarily split into the sum of line bundles but
some analogous decompositions are still available [19].

On the Riemann sphere there do not exist vector bundles stable in the
sense of Mumford, and a holomorphic vector bundle is semistable iff its
splitting type is (k, ..., k). This follows from the following statement (see
[1]). Let

E = O(β1)⊕O(β2)⊕ . . .⊕O(βm)

and
F = O(α1)⊕O(α2)⊕ . . .⊕O(αn)

be two vector bundles on the Riemann sphere, where O(αj), O(βj), j =
1, ..., n are sheaves of the germs of holomorphic sections of the line bundles
with Chern numbers αj, βj, and m > n. The holomorphic vector bundle F
to be isomorphic to a holomorphic subbundle of E if the following inequal-
ities are satisfied:

αi ≤ βi, i = 1, ..., n. (11)

But on the Riemann sphere there exist holomorphic bundles (E,∇) sta-
bilized by the connection ∇. We will say that the subbundle F ⊂ E is
stabilized by the connection ∇, if the covariant derivative ∇ d

dx
maps local
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holomorphic sections of F into sections of the same subbundle F. It means
that ∇(Γ(F )) ⊂ Γ(τ ∗CP 1 ⊗F ). The pair (E,∇) is called stable (semistable),
if for every subbundle F ⊂ E stabilized by ∇, one has µ(F ) < µ(E) (resp.
µ(F ) ≤ µ(E).) For given irreducible monodromy, existence of the holomor-
phic semistable bundle is the condition of solvability of the problem II, but
there exists a class of reducible representations for which the problem is
known to be solvable independently of this condition.

The representation (5) is called a B-representation, if it is reducible and
the Jordan normal form of every monodromy matirix Mi consists of only
one Jordan block.

Theorem 12. [12] For the B-representation (5) Problem II is solvable
iff the vector bundle obtained from the cannonical extension of the bundle
Eρ is semistable in the sense of Mumford.

The splitting type of the vector bundle obtained from the canonical
extension of the bundle Eρ → Xm coincides with the partial indices of the
continuous matrix function constructed from monodromy matrices in the
way which we describe in section 1.6.

From the theorem above and from corollary 1.1 we have
Corollary 2. The Chern number of the canonical bundle is equal to

c1(Eρ) = np and therefore the splitting type of Eρ is (p,p,...,p).

3. The generalized analytic vectors

In this section we consider holomorphic vector bundles with Lp - con-
nections from the viewpoint of the theory of generalized analytic vectors
[8],[9]. By definition generalized analytic vectors, by analogy with the one
dimensional case [39], are regular solutions of systems of 2n elliptic partial
differential equations presented in the complex form

∂−
z
f(z) = A(z)f(z) +B(z)f(z), (12)

where A(z), B(z) are bounded matrix functions on a domain U ⊂ C and
f(z) = (f 1(z), ..., fn(z)) is an unknown vector function. A solution of sys-
tem (12) is called regular in U, if it does not have singular points, is single-
valued and has partial derivatives in the sense of Sobolev.

Along with similarities between the one-dimensional and multi-dimensional
cases, there also exist essential differences. One of them, as noticed in [8], is
that there can exist solutions of system (16) for which there is no analogue
of the Liouville theorem on the constancy of bounded entire functions.

We present first some necessary fundamental results of the theory of
generalized analytic functions [39],[7],[5],[8] in the form convenient for our
purposes.

Let f ∈ Lp(U), where U is a domain in C. We write f ∈ Wp(U), if there
exist functions θ1 and θ2 of class Lp(U) such that the equalities∫∫

U

f
∂φ

∂z̄
dU = −

∫∫
U

θ1φdU,

∫∫
U

f
∂φ

∂z
dU = −

∫∫
U

θ2φdU
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hold for any function φ ∈ C1(U).
Let us define two differential operators on Wp(U)

∂z̄ : Wp(U) → Lp(U), ∂z : Wp(U) → Lp(U),

by setting ∂z̄f = θ1, ∂zf = θ2. The functions θ1 and θ2 are called the
generalized partial derivatives of f with respect to z̄ and z respectively.
Sometimes we will use a shorthand notation fz̄ = θ1 and fz = θ2. It is clear
that ∂z and ∂z̄ are linear operators satisfying the Leibnitz equality.

Define the following singular integral operator on the Banach space
Lp(U):

T : Lp(U) →Wp(U),

T (ω) = − 1

π

∫∫
U

ω(t)

t− z
dU, ω ∈ Lp(U). (13)

The integral (13) makes sense for all ω ∈ Lp(U), almost all z ∈ U , and all
z /∈ Ū and (13) determines a function φ(z) = T (ω) on the whole C. For
ω ∈ Lp(U) with p > 2, the function φ is continuous.

Any element of Wp(U) can be represented by an integral (13). In par-
ticular, if fz̄ = ω, then f(z) can be represented in the form

f(z) = h(z)− 1

π

∫∫
U

ω(t)

t− z
dU,

where h(z) is holomorphic in U . The converse is also true, i.e., if h(z) is

holomorphic in U and ω ∈ Lp(U), then h(z) − 1
π

∫∫
U

ω(t)
t−z

dU determines an
element f(z) of Wp(U) satisfying the equality fz̄ = ω.

As we saw, the generalized derivative with respect to z̄ of the integral
(13) is ω. Similarly, there exists a generalized derivative of this integral
with respect to z. It equals

− 1

π

∫∫
U

ω(t)

(t− z)2
dU. (14)

The integral (14) is understood in the sense of the Cauchy principal value.
It is known [39] that in one dimensional case, if B = 0, a solution of (12)

can be represented as

Φ(z) = F (z) exp(ω(z)), (15)

where F is a holomorphic function in U , and ω = − 1
π

∫ ∫
U

A(z)
ξ−z

dU .
Consider a matricix elliptic system of the form:

∂−
z
Φ(z) = A(z)Φ(z). (16)

In this case an analogue of factorization (15) is given by the following
theorem
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Theorem 13. [7] Each solution of the matricial equation (16) in U can
be represented as

Φ(z) = F (z)V (z), (17)

where F (z) is an invertible holomorphic matrix function in U , and V (z) is
a single-valued matrix function invertible outside U .

We will use the representation of the solution of system of (16) in the
form (17) for the construction of a holomorphic vector bundle on the Rie-
mann sphere.

We recall some properties of solutions of (16).
Let C(z) be a holomorphic matrix function, then [C(z), ∂z] = 0. Indeed,

[C(z), ∂z]Φ(z) = C(z)∂zΦ(z)−∂zC(z)Φ(z) = C(z)∂zΦ(z)−C(z)∂zΦ(z) = 0.

Here we have used that ∂zC(z) = 0.
Two systems ∂zΦ(z) = A(z)Φ(z) and ∂zΦ(z) = B(z)Φ(z) are called

gauge equivalent if there exists a nondegenerate holomorphic matrix func-
tion C(z) such that B(z) = C(z)A(z)C(z)−1.

Let the matrix function Ψ(z) be a solution of the system ∂zΦ(z) =
A(z)Φ(z) and let Φ1(z) = C(z)Φ(z), where C(z) is a nonsingular holo-
morphic matrix function. Then Φ(z) and Φ1(z) are solutions of the gauge
equivalent systems. The converse is also true: if Φ(z) and Φ1(z) satisfy
systems of equations

∂zΦ(z) = A(z)Φ(z), ∂zΦ1(z) = B(z)Φ1(z)

and A(z) = C−1(z)B(z)C(z), then Φ1 = D(z)Φ(z) for some holomorphic
matrix function D(z).

Indeed, as we proved above, C(z)∂zΦ1(z) = A(z)C(z)Φ1(z), and there-
fore Φ1(z) satisfies the equation ∂zΦ1(z) = C−1(z)A(z)C(z)Φ1(z). To prove
the converse let us substitute in ∂zΦ(z) = A(z)Φ(z), instead of A(z) the
expression of the form C−1(z)B(z)C(z) and consider

∂zΦ1(z) = C−1(z)B(z)C(z)Φ(z);

then it follows, that

C(z)∂zΦ(z) = B(z)C(z)Φ(z).

But for the left hand side of the last equation we have C(z)∂zΦ(z) =
∂zC(z)Φ(z), therefore

∂z(C(z)Φ(z)) = B(z)(C(z)Φ(z)).

From this it follows that Φ and CΦ are the solutions of equivalent systems,
which means that Φ1 = DΦ.

The above arguments for solutions of (16) are of a local nature, so they
are applicable for an arbitrary compact Riemann surface X, which enables
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us to construct a holomorphic vector bundle on X. Moreover using the
solutions of system (16) one can construct a matrix 1-form Ω = DzFF

−1

on X which is analogous to holomorphic 1-forms on Riemann surfaces.
Let X be a Riemann surface. Denote by Lα,β

p (X) the space of Lp-forms
of type (α, β), α, β = 0, 1. Denote by Wp(U) ⊂ Lp(U) the subspace of
functions which have generalized derivatives.

We define the operators

Dz =
∂

∂z
: Wp(U) → L1,0

p (U), f 7→ ω1dz = ∂zfdz,

Dz =
∂

∂ z
: Wp(U) → L0,1

p (U), f 7→ ω2d z= ∂zfdz.

It is clear that D2
z
= 0, hence the operator Dz can be used to construct

the de Rham cohomology.
Let us denote by CL1

p(X) the complexification of L1
p(X), i.e. CL1

p(X) =
L1
p(X)⊗ C. Then we have the natural decomposition

CL1
p(X) = L1,0

p (X)⊕ L0,1
p (X) (18)

according to the eigenspaces of the Hodge operator ∗ : L1
p(X) → L1

p(X),
∗ = −ı on L1,0

p (X) and ∗ = ı on L0,1
p (X).

The decomposition (18) splits the operator D : L0
p(X) → L0

p(X) in the
sum D = Dz +D−

z
.

Next, let E → X be a C∞-vector bundle on X, let Lp(X, E) be the sheaf
of germs of Lp-sections of E and let Ω ∈ L1

p(X,E) ⊗ GLn(C) be a matrix
valued 1-form on X. If the above arguments are applied to the complex
L∗
p(X, E) with covariant derivative ▽Ω, we obtain again the decomposition

of the space CL1
p(X,E) and the operator ▽Ω :

CL1
p(X,E) = L1,0

p (X,E)⊕ L0,1
p (X,E),

▽Ω = ▽′
Ω +▽′′

Ω.

Locally, on the domain U, we have ▽U
Ω = dU + Ω, where Ω ∈ L1

p(X,U) ⊗
GLn(C) is a 1-form. Therefore ▽U

Ω = (Dz +Ω1)+ (D−
z
+Ω2), where Ω1 and

Ω2 are the matrix valued 1-forms on U. We say that a Wp-section f of the
bundle E with Lp-connection is pseudoholomorphic if it satisfies the system
of equations

∂−
z
f(z) = A(z)f(z), (19)

where A(z) is a n×n matrix-function with entries in L0
p(X)⊗GLn(C) and

f(z) is a vector function f(z) = (f1(z), f2(z), ..., fn(z)), or

Dzf = Ωf,

where Ω ∈ L1
p(X)⊗GLn(C).
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Theorem 14. There exists a one-to-one correspondence between the
space of gauge equivalent systems (16) and the space of holomorphic struc-
tures on the bundle E → X.

Consider the analogue of problem I for the system (12):
Problem III. Find a piecewise-regular solution of system (12) on the

whole plane C equal to zero at infinity and satisfying on Γ the following
boundary condition

W+ = G(t)W−, (20)

where detG(t) ̸= 0 on Γ.
This problem is solvable using the methods of the singular integral equa-

tions [39] and it is known, that the number of linearly independent solutions
on R is finite [9]. Denote this number by l. Let k = 1

2π
∆ΓargdetG(t) as

above be the index of the boundary value problem III. It is clear (see [9]),
that l ≥ max(0, 2k) and it is possible to choose a matrix function G(t), such
that l(G) = s, for every given number s ≥ max(0, 2k), and therefore it is
possible to consider the number l as a function of G(t). The index of the
problem is a topological invariant and in the one dimensional case it is a
complete invariant. It is known also, that in the multi-dimensional case the
index is not a complete invariant, but in the stable case, the index defines
all invariants of the problem. The number l as the function of G(t) is called
stable, if l(G) = l(G1) for all nondegenerate matrix functions on Γ, which
are sufficiently close to G(t).

Theorem 15. [9] The number l is stable iff l = max(0, 2k).
Let C(t) be any matrix function on Γ and C(t) ∈ Ω, which has a holo-

morphic extension to U+, not necessarily nonsingular everywhere, and let
1
2π
∆Γargdet(G

−1C) = 0, then there exists an extension of G−1C to U+.
Denote by P (z) this extension and let Φ(z) be some holomorphic solution
of problem I. Consider the substitution

w(z) = P (z)Ψ(z) on z ∈ U+;w(z) = Ψ(z) on z ∈ U−.

Proposition 4. The matrix function Ψ(z) is holomorphic in U+ ∪ U−

iff w is a solution of the system

∂zw = Aw, (21)

where A(z) = ∂zPP
−1, for z ∈ U+ and A(z) = 0, for z ∈ U−.

Let the index of the problem be k and let C(t) be a diagonal matrix
function with diagonal entries diagC(t) = (tp, ..., tp).

Theorem 16. [7] The matrix function G(t) ∈ Ωk iff the Liouville theo-
rem holds for the system (21).

Proof of this theorem follows from the following arguments from the
theory of singular integral equations. The fulfilment of the Liouville theorem
for the solution of the system (21) is equivalent to the existence of a solution
of the following matricial system of singular integral equations

B(z) +
1

π

∫ ∫
U

WB

t− z
dUt = E, (22)
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where E is the identity matrix. On the other hand G(t) ∈ Ωk iff the system
(22) is solvable with respect to B(z).

4. Conclusion

It is possible to pose the problems I and II for any compact Riemann
surfaces [19], [16], [20], [12]. In this case as well as in section 2, from
the problem data one can construct a holomorphic vector bundle on the
Riemann surfaces. However in this case one does not have theorems of
type 1.2 and 2.1 anymore. For the classification of holomorphic vector
bundles discrete invariants are not sufficient, since there appear moduli
spaces of holomorphic vector bundles (see [18]). Besides, classical statement
of problem II demands some specification related to apparent singular points
of the constructed system of differential equations, which necessarily arise
and their number depends on the genus of the Riemann surface.

For the Riemann surfaces it is also possible to pose problem II in the
following form: construct a semistable holomorphic vector bundle of degree
zero with a logarithmic connection, which has prescribed singular points
and monodromy.

Under such formulation of problem II it is known, that for irreducible
representations problem II has a solution iff the pair (E,∇) constructed by
the given data is stable.

For the Riemann surfaces the majority of results from section 3 may be
generalized and in our opinion they will be adequate tools for the enrichment
of methods of Riemann problems (see [24]).
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